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ON THE PROPAGATION OF ELASTIC VIBRATIONS FROM A POINT SOURCE 
WITHIN AN ANISOTROPIC HALF-SPACE* 

1.0. OSIPOV 

There is investigated the solution, obtained in /l/, for the problem of elastic 
vibrations propation in an anisotropic half-space with four elastic constants, from 
a point source of an instantaneous pulse type. By using the results from /2--4/, 
the features of wave propagation as a function of the elastic constants relation- 
ships are studied. The case is examined, when the elastic constants satisfy condi- 
tions for which the wave fronts have no acute-angled edges. A Riemann surface is 
constructed for a single-valued detemlination of the solution, andthe correspondence 
between points of this surface and the wave fields is studied. To determine the 
incident and reflected waves on one two-sheeted surface, there is introduced the 
concept of a two-layer domain of definition of the reflected waves. Expressionsare 
obtained for the primary, propagated from the source, and secondary perturbation 
fronts reflected from the half-space boundary. 

Wave process in anisotropic media are subject to more complex regularities than in iso- 
tropic media since the equations of motion of a medium do not reduce to wave equations. In 
contrast to the isotropic media with two types of waves (purely longitudinal and purely trans- 
verse) three kinds of waves (one quasi-longitudinal and two quasi-transverse) propagated at 
different velocities, can exist in anisotropic media. The displacement vectors in such waves 
have normal and tangential components to the front, and the propagation velocities depend on 
the direction. The wave propagation depends qualitatively on the relationship between the 
elastic constants. The examination of these questions is of definite difficulty, hence, the 
solutions obtained in /l/ have not yet been investigated completely. 

Upon going from an anisotropic to an isotropic medium in the plane problem, the quasi- 
longitudinal wave goes over into a longitudinal, one of the two quasi-transverse waves goes 
over into a transverse Si‘ wave with displacements in the plane of wave propagation, and the 
other goes over into a transverse Sii wave with displacements perpendicular to the same plane. 
In contrast to the quasi-transverse waves, these transverse waves are propagated at an 
identical velocity comprising a single transverse wave. By analogy with the isotropic medium, 
we call the corresponding quasi-transverse waves SI' and SH waves. 

As in /I./, we limit ourselves to a study of wave propagation of the first type (quasi- 
longitudinal), and of the second type (quasi-transverse S1'). These waves cannot exist separat- 
ely. Study of the waves of the third kind (quasi-transverse of Sil type) is trivial. 

1. Let us examine the elastic vibrations in an anisotropic half-space y> 0 with four 
elastic constants, caused byapoint source of the instantaneous pulse type that is at the 
point x = 0,y = y, at the time t=O. We have analogous motion even in a medium with nine 
elastic constants if the coordinate planes coincide with the planes of elastic symmetry, and 
the vibrations are independent of the coordinate z. 

The displacement vector components of the quasi-longitudinal and quasi-transverse Sir 
type waves are determined by the expressions 

(1.1) 

u (e, h w (5)) = c s” w (5) 4 , v (64 ?“, w(E)) = s” (a5” + 0%” - 1) w (6) d5 

The lower limits of the integrals are arbitrary; in particular, points at which the in- 
tegrands are fixed /l/ can be taken as these limits. 

The complex variables Bi; and the quantities hk are defined by the relationships 
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1 - @kg + hk f*i - %I) = 0 (8 = 5 i t; lj = y / t; Tjo = 9, / t) 

hk  = ( [((I + b) - ro,z;(- 1)” vm )I” (k= 1; 2) 

Q (0,) = ((b -t- d) - L’&;21’ - 4bd (1 - ~f3~*)(1 - dek*), L = ab i_ 8” - ~2 

(1.2) 

The functions 7Lb are branches of the algebraic function 1 which is unique on a Riemann 
surface whose form depends on the relationship between the elastic constants and is studied 
in /3/. The functions wP are branches of an arbitrary analytic function wthat is unique on 
a two-sheeted Riemann surface, which are selected so that /2,3/ their real parts would vanish 
on the edges of slits along the real axes of planes of the Riemann surface where the hk take 
on real values. 

For real media of the anisotropy class under consideration, the ratios betweenthe elastic 
constants and the density satisfy the conditions 

a :‘ cl, b ; d, d ; 0. K, = nb - (c - d)” =_ 0 
n .:= C,, I p, b = C,,: p> d=CfL31p, c=(CSsfC12)/p 

(1.3) 

When these quantities satisfy the additional condition 

K2 = nb - (c i- d)2 < 0 

two of the four branch points of the inner radical of hk 

Oi”E 
t 

?.I = (h +- d)N, - (b - d)(a - b)d. N, = (a - d)(b - d) -8 

(1.4) 

(1.5) 

are real and two are imaginary. 
Elastic wave propagation in media satisfying the condition (1.4) depends on the signs of 

the quantities 

Ni = (a - d)b - cL, N, = (b - d)a - c’ (1.6) 

2. Let us consider the case when N%>O and Na>O. According to /4/, the Riemann sur- 
face has the form displayed in Figs.1 and 2 (the shape of the omitted left sides of the sur- 
faces is symmetric to that presented). The slit edges (&", 00) of the planes 8% and 6, are 
glued crosswise. The functions hp are fixed on the planes l31 so that they would be positive 
for ek = ip, where p is a sufficiently small positive quantity. The functions h, and _h, take 

on real values on the edges (-llJf/a,$1/1/;;) of the O1 plane, and (-l/I/& fl /l/d) of 
the Ba plane. On the edges of these slits, the real parts of the functions W, and WZ vanish 
correspondingly. 

Fig.1 Fig.2 

The correspondence between points of the planes 0k and points of the plane k is expres- 

sed by (1.2), and can be established on the basis of the results in /4/. We shall consider 

the quasi-longitudinal wave to be propagated in the &Q plane (Fig-l), and the quasi-trans- 

verse wave in the plane S2?la (Fig.2). The subscripts of the coordinates of points displaying 
affiliation with the planes &Q are not indicated in (1.2). 

The front of quasi-lonitudinal and quasi-transverse waves with their semi-tangents cor- 
respond to the edges of the slits (--1i I/a, j-1 /vz) of the e1 plane and (--1 i v/a, +'i /rq 
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of the !3* plane. Terms of the solution (1.1) vanish at points of the front of the quasi- 
longitudinal wave and its external domain as k = 1; and at points of the quasi-transversewave 

front and its external domain for k = 2. There axe no vibrations in domains of the planes 

5krlk external to the wave fronts. 
Although the vibrations (1.1) do not reach the half-space boundary ylk = 0, the quasi- 

longitudinal and quasi-transversewave fronts are convex closed curves /2/ and canbe expressed 
as envelopes of the lines (1.2) for xeal values of @x and hi in the form 

The upper edges of the slits correspond the upper halves of the wave fronts (Q< Q), and the 
lower to the lower half-planes (Q. >nO). 

Analogously, the upper halves of the wave fields (Q-C Q) correspond to the upper half- 
planes e, , ana the lower (qk > qO) to the lower. The points & = 0,~ = q. on the wave 
fields correspond to t_he infinitely remote points of the planes Ok. 

j&j aa (- I/Z + V/df 
The segments (- dz-j- 

cut off by the wave fronts on the horizontal axes of symmetry by the 
wave fields ql =Q, and Q =Q, correspond to the segments (~~ijGjr:~)~a(-t_i~I/;t,~~~) 
of the real axes of the planes 0, and e2. 

The functions & take on complex values on the edges of the slits (@z", icy) oftheplanes 

ok * A line in the left (right) upper quarter of the quasi-longitudinal wave field corres- 
ponds to glueing the left (right) edge of the slit of the Or plane and the right (left) edge 
of the slit of the t12 plane. The ends of these lines coincide at the points 91 = nz"= 
-l/~k(B,")+q, and n1 = Q of the coordinate axes forming a closed contour bounding the 
domain B,in the upper half of the quasi-longitudinal wave field that is symmetric relative 
to this axis. The rest of the upper half of the quasi-longitudinal wave field is denoted by 

A 1. 
The functions Lx have real values, where a, 640) = A, (47, on the sections (0, 40) of 

the positive_imaginary half-axes of the 8% and e2 planes. The sections (no -VT)< Q <qrlzo 
and (nO - I/d) < rlz --< T)$*, of the ordinate axes Q and SW set in correspondence to the ex- 
pressions qk = no- II&, will correspond to the sections 0<8,,< es0 and O< 4 Q es*, 
where /4/ 

6,* = i I- ($5&M-j- L i/C+@ - (a - cb)(b - d)i) i (@K&J". (2.21 

The section riz"<% < 12* of the nI ordinate axis, set in correspondence to the expres- 
sion n~=~~-- i/k, and belonging to the domain B,, corresponds to the section Hz"> i+ >eS* 
of the positive imaginary half-axis of the 8, plane. 

The lines L, in the first and second quadrants of the Be plane, going from the point 
6&,* = ie,* to the infinitely remote point and expressed by the functions /4/ 

8% = +A + VA --=-IF) / (I/z&K,)]';* + is, (2.31 

A = JfC/ad IM - (La Jr 4abd2)c,21 

B = A-& (adK,R,e,4 + 2adMez2 + h’&(b - d)d + c”]] 

for values of es in the range (e,*, m), correspond to the sections &*, sD) of the axis Q 
belonging to the upper hal.f of the wave fields. These lines bound a domain D, in the upper 
8% half-plane, which is symmetric relative to the imaginary axis: the rest ofthishalf-plane 

is denoted by C,. Because of symmetry, the correspondence between the lower halves of the 
wave fields and the lower half-planes of the Riemann surface is the same as for the upper. 

The plane el, set in conformity to the relationship (1.2) for k = 1, corresponds tothe 
domain d,of the quasi-longitudinal wave field. The displacements in this domain are expres- 
sed by members of the solution il.11 defined on the plane et. 

The domains Dz on the plane 8,, set in correspondence to the relation (1.21 for k = 2 
correspond to the domain B,of the quasi-longitudinal wave field: displacements in these do- 
mains are expressed by terms of the solution (1.1) for k = 2, defined in the domain D,. 

The domain C, in the plane en, set in conformity to the relation (1.2) for k=2 
corresponds to the quasi-transverse wave field; displacements are expressed by terms of the 
solution (1.11 for k=2, defined in the domain C,. 

The features mentioned of determining the solution (1.1) on the Riemann surface are not 
investigated in /I/; it was assumed that the quasi-longitudinal displacements are expressed 
by terms of the solution (1.1) defined on the plane 0,. and the quasi-transverse by termsin 
the solution (1.1) defined on the 0, plane. 

For images of the wave pattern on the planes &rmr the wave fields from an instantaneous 
pulse appliedatthe point & = 0, r]k = qo are represented by domain bounded by the closed 
curves (2.11, which are moved to the boundary of the half-space Q = 0 with the course of 
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time, without undergoing geometric changes up to reaching the boundary. Central points of 
the wave fields move along the axes qk asymptotically approaching the half-space boundary. 
The line nr = no divide the wave field into two parts; the points of one of them, for which 
?'h = 110, do not meet the half-space boundary, while the points of the other for which qk > 

rlO? reach it in the course of time. 

3. At the time t = go/v5 the quasi-longitudinal perturbation field reaches the half- 
space boundary and excites two kinds of reflected waves. 

For A, (B,')Y, > t > Y, i V-'i;, w en h 1/6>qo > l/h, (e,‘), quasi-longitudinal perturbations A, 
characterized by the first terms of the solution (1.1) reach the boundary: 

u1 = Re U (8,, h,, wI (5)). 0, = Re V (B,, ha, wI (5)) (3.X) 

The variable Bi is defined by the relationship 

1 - %%I + hl hi - llof = 0 (3.2) 

The reflected quasi-longitudinal and quasi-transverse perturbations are expressed by the func- 

(3.3) 

The variables @1x and i& are defined by the relations 

1 - e1t511 - hl h** + ‘lo) = 0, f - %&2 - ha%z-- %%I = 0 (3.4) 

Let us note that errors were made in the expressions (19) in /l/ that correspond to (3.4); 
the factor h,W, (6)/(x, -h,) is omitted in the right side of (2.3). 

The relationship (3.2) sets the segment yi, which is symmetric with respect to the imag- 
inary axis, intersects this latter at the point 0, < ez", and approaches points of the upper 
edge of the slit (-1 /I/a, $1/1/G) by the ends, into correspondence with the section of the 
half-space boundary on the upper half-plane 8,, whichthequasi-longitudinal perturbations (3.1) 
reached. The domain bounded by the segment y1 and the section of the upper edge of the slit 
is denoted by D,. Points of the incident quasi-longitudinal wave field that passedthehalf- 
space boundary correspond to points of the domain D,, while the section of the incident wave 
front that has passed the boundary corresponds to the section of the upper edge of the slit 
between the tip points of the segment yl. The solution (3.1) loses physical meaningatpoints 
of the domain 13,. The incident waves are expressed at the time under consideration by func- 
tions (1.1) defined on the part of the Riemann surface that does not contain the domain I),. 

A point on the quasi-longitudinal and quasi-transverse reflected wave fields, to which 
the relations (3.4) set the complex points 81x and 8X2 in correspondence, will correspond to 
each point of the incident wave field that has passed the half-space boundary. The points 
I3 It and Eli2 occupy the same domain in the complex plane as does the point Eil corresponding 

to points of the incident wave field which has passed the half-space boundary. On the half- 
space boundary 8, = 011 = Bla. It can be considered that as the incident wave field points 
cross the half-space boundary, their corresponding points 0, split into &I and &., to form 
a double-layer domain D, on the upper e1 half-plane. The relationship (3.4) sets points of 
the quasi-longitudinal reflected wave field in correspondence to the points 8,, of one layer, 
and points of the quasi-transverse reflected wave field in correspondence with the points 01% 
of the other layer. At the times under consideration, the quasi-longitudinal and quasi-trans- 
verse reflected waves are expressed by the functions (3.3) determined in the two-layered do- 

main D%which broaden in the course of time. 
The quasi-longitudinal and quasi-transverse reflected wave fronts are expressed as enve- 

lopes of the lines (3.4) for real values of &, C& and hg in the form 

b = ,-h,' 1 (h, - B,,h,'), Qt = 11 fh, - (M,') - 710 (3.5) 

El2 = --h,rl1z - hX'?W 7112 = 11 - (h, - e,,h,hl i (h, - e,,h;) 
and are determined by a section of the upper edge of the slit (--1/i/& +1 if3 enclosed 

between the ends of the segment yl. 
At the time t= h,(Oz")y, the quasi-longitudinal perturbations of the domain D,, expres- 

sed by the second terms in the solution (1.1) defined in the domain D, of the plane Oar 
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reach the half-space boundary 

ul* = Re U (e,, L w2 (C)), vr* = Re V CL L w2 (5)) (3.6) 

The variable 8% is defined by the relationship 

1 - %E, + a, (711 - Q) = 0 (3 

The quasi-longitudinal and quasi-transverse reflected perturbations caused bytheperturbati 

(3.6) are expressed by the functions 

(3 

7) 

ons 

8) 

The variables OzL and E& are defined by the relationships 

(3.9) 

The functions (3.8) have the same form as the solution (32) in /l/, however, the latter ex- 

presses the quasi-transverse and quasi-longitudinal reflected perturbations excited by a 

quasi-transverse incident wave. Let us note that there is an error in the expression for V, 
in /l/: the factor R, (Q/R(&) h as been omitted in the integrand. 

For hz (6,*)% : t > a, (e,o)Y,, when 1 /Lz(e,")> no> 1 lhz(e2*), part of the domain B,of the 
incident quasi-longitudinal wave field crosses the half-space boundary, but the point n?* of 

this domain still does not reach the boundary. 

The relationship (3.2) sets segments y1(l) on the upper fjl half-plane from the edge of 

the slit (+Cl,", CO) to the upper edge of the slit (-I/ 1/z, +1/ 1/Z), and located symmetrical- 

ly relative to the imaginary axis, in correspondence with sections of the half-space boundary 

with which quasi-longitudinal perturbations of the domain A, make contact. The domains D,(l) 
bounded by the segments ylcl) and the sections of the upper edge of the slit, correspond to 

points of the domain A, which have crossed the half-space boundary. 

The relationships (3.4) set points of the domains A,, and A,, of the quasi-longitudinal 
and quasi-transverse reflected perturbations expressed by the functions (3.31, into corres- 

pondence with the points Cl,, and eL2 of the double-layer domain D,(l). 
The relationship (3.7) sets the line yz(') in the domain D, on the upper half-plane I$,, 

which is a continuation of the segment yl(') in the plane e,,into correspondence with the 

section of the half-space boundary which the quasi-longitudinal perturbations of the domain 

B,, expressed by the functions (3.6), have reached. The domains D,(l), bounded by the lines 
yz"', correspond to points of the domain B, that have crossed the half-space boundary. 

The relationships (3.9) set points of the domains A,,* and A,,*of the quasi-longitudinal 

and quasi-transverse reflected perturbations expressed by the functions (3.8) intocorrespond- 
ence with the points es1 and 8,, of the double-layer domain D,(I) . 

The functions h, and h, take on identical values on opposite edges of the slits(+O,', 00) 

of the e1 and f& planes. The first relations in (3.4) and (3.9) set the boundary between the 
domains A,,* and A ll*of the quasi-longitudinal reflected wave field in correspondence with 
sections of these slit edges included between the points Bzo and the ends of the lines y,(')and 

r*"', and the second relations of (3.4) and (3.9) set the boundary between the domains A,, 
and A,,*of the quasi-transverse reflected wave field in correspondence. 

If t > ha (B,*)j.k,, then 1 /h, (e,*) > no and the point Q* of the domain B, of the quasi- 
longitudinal incident wave field will cross the half-space boundary. As in the precedingcase, 
the reflected waves are described by the functions (3.3) and (3.81, however, the domain D,(l) 

on the plane O1 will be bounded by the lines YY , and the domain D,(l) on the plane Be by 
the lines ya (*) and the section of the line L, included between the lines v~(~). 

4. At the time t = y,fI/a quasi-transverse perturbations expressed by the second terms 
of the solution (1.1) defined in the domain C, of the plane O2 reach the half-space boundary: 

u2 = Re u (e,, a,, wz (5)) (4.1) 

u2 = Re V (e,, aft wz (5)) 
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The variable 8, is defined by the relation 

1 - U, + A, (% - 110) = 0 (4.2) 

The reflected quasi-longitudinal and quasi-transverse perturbations caused by the perturba- 

tions (4.1) are expressed by the functions 

The variables EIzl and 6.& are defined by the relations 

1 - ea18z1 - bqzl - hzqo = 0 (4.4) 

1 - e,,E,, - ha (qzz + qO) = 0 

For & @a*)YO > t > Yo / v/a when Jf/;i>q, > l/a,(O,*), part of the incident quasi-transverse 
wave field will cross the half-space boundary, and the point qz* of this field will not reach 

the boundary. 

The relationship (4.2) sets a line & in the domain C, of the upper 8, half-plane inter- 
secting,the imaginary axis within the section (0, e,*), into correspondence with a section of 
the half-space boundary which the perturbations (4.1) reached. For t = hz (&*)y, the point 

rla * of the quasi-transverse perturbations reaches the half-space boundary, and the line pz 
intersects the imaginary axis at the point ea*. Part of the incident quasi-transverse wave 
field that has crossed the half-space boundary corresponds to _the domai_n C,(l) bounded by the 

line pa and a section of the upper edge of the slit (-1 lJf& +1/l/d). 

For t > h2 (&*)y,, when 1 /a, (es*) > q,,, the point Q* of the quasi-transverse incident 
wave field will cross the half-space boundary. The relationship (4.2) sets the line pz(l) in 
the domain C, of the upper OS half-plane, that goes from the upper edge of the slit(-1 /v/s, 
+I /@) to the line L, and is symmetric relative to the imaginary axis, in correspondence 

with the section of the half-space boundary that the quasi-transverse perturbations have 
reached. The points q% > Q* of the quasi-transverse wave field on the axis Q that have 
crossed the half-space boundary correspond to the section of the line L, included between the 

ends of the line fiJ')_ In contrast to the preceding case, the domain CzQ)is bounded by the 
lines flz(n and sections of the line L, and the upper edge of the slit (-1/1/Z, +1/J@. 

The solution (4.1) becomes a meaningless physically at points of the domain Cz(n . The 
relations (4.4) set points of the quasi-longitudinal and quasi-transverse reflected wave 
fields expressed by the functions (4.3) into correspondence with the points 8,, and 022 of 

the two-layered domain C,(1) . 
The coefficients of ~~(6) in (4.3) contain the function h, which has real values in the 

interval (-l/J&, +l/fq and imaginary in the range (+l/l/~,&l/Vr~. 
If points of the section of the boundary of the two-layered domain C,(l) belongin_g to 

the upper edge of the slit (-l/j/& +1/v& satisfy the condition -l/v/a< & < +1/l/a, the 

coefficients of w,(G) take on real values, and the solutions (4.3) vanish. 
The quasi-longitudinal and quasi-transverse reflected wave fronts agree with the envelop- 

es of the lines (4.4), and are, on the section of the boundary of the two-layered domain C,(l) 

belonging to the upper edge of the slit, expressed by the functions 

E,1 = --h,‘qz* - h,‘%, qzl = (1 - (a, - ezlazhv(h, - esla:) 
522 = -a;i(a, - e22h2’). rlzz = I/(X, - ezzazr) - q. 

(4.5) 

When the boundary section of the domain C,(1) belonging to the upper edge of the slit 

overlaps the interval (-l/j//a, +1/r/i) t o emerge beyond its boundary, the coefficients for 

zu&) take on complex values at the points 8,, and I&, of the intervals (&l/p, rtl/jGq, 
and the solutions (4.3) do not vanish. 

At the points 61z1 the first relationship of (4.4) decomposes into two equations 
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i.e., the reflected quasi-longitudinal perturbations are propagated along the half-space 
boundary without penetrating into the bulk. 

Sections of the envelope of the line expressed by the second relation in (4.4) do not 
agree with the front of the reflected quasi-transverse perturbations for values of R,, from 
the.interval (+l/fi, -&l/@) since the values of the third and fourth expressions in (4.3) are 
not zero there. In order to satisfy the boundary conditions, we continue the solution expres- 
sed by the third and fourth expressions of (4.3) along the semi-tangents to sections of the 
envelope of the line (4.4) for values of 8%, from the intervals &Z/l.& tl/j!f/. 

These sections of the env_elope with the plane q* = 0 and the semi-tangents correspond- 
ing to the values Bza = &l/f/a, limit the domain of indirect perturbations. Points of the 
quasi-transverse wave front (4.1) corresponding to the values &, in the interval 

&l/l/d) 
(&ll~~, 

cause reflected quasi-longitudinal perturbations by reaching the half-space boundary 
which in turn excite a quasi-transverse wave by being propagated along the boundary more 
rapidly than the quasi-transverse wave that leads the quasi-transverse wave being reflected 
bytheusual law. 

In this case, the front of the reflected quasi-transverse wave is determined by the 
second expressions of (4.5) in the range 

@a2 =&-l/f/a, 
--l/f/a< est.< -+1/~~a and by the two semi-tangents 

corresponding to the values the front of the reflected quasi-longitudinal wave 
is determined by the first expressions in (4.5) in the interval --1/l/n< enI < +$@a, 

In conclusion, let us note that in contrast to wave propagation in an isotropic medium, 
the wave process in an anisotropichalf-space must be considered as a single complex process 
consisting of primary quasi-longitudinal and quasi-transverse perturbations being propagated 
from a source, and of secondary quasi-longitudinal and quasi-transverse perturbations reflect- 
ed from the half-space boundary. 
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